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1 Three-state activation-bleaching model for single fluorophores

We consider switching between three states, the on-state, the off-state, and the bleached state.
The switching between the on and off-states is modelled withthe Poisson distribution; i.e. in
the absence of photobleaching the number of transitions from the off-state to the on-stateP sw

m

satisfies:

P sw
m =

rm

m!
exp (−r) , (1)

wherer = kswt with t the time andksw the switching rate, which is related to the lifetimes
of the on and off-states by1/ksw = τon + τoff . The bleaching is governed by the geometrical
distribution, namely the probability for bleaching at them-th switching cycle is:

P bl
m = b (1− b)m−1 . (2)

whereb = ksw/kbl is the probability for bleaching during one cycle, withkbl the effective
bleaching rate. Intuitively, for small time scales the statistics will be close to the activation
dominated Poisson-model, whereas for large times it will beclose to the bleaching dominated
geometric distribution. For intermediate timest the probability form activation cycles is the
sum of two terms. The first is the product of the probabilityP sw

m of havingm switching cycles
and the probability(1− b)m that the emitter has not bleached in them switching cycles. The
second term is the product of the probabilityP bl

m of bleaching during them-th switching cycle
and the probability of having at leastm switching cycles. In mathematical terms (form ≥ 1):

Pm = (1− b)m
rm

m!
exp (−r) + b (1− b)m−1

∞
∑

n=m

rn

n!
exp (−r). (3)

Form = 0 bleaching does not play a role, so the probability is then given by the Poisson term
only:

P0 = exp (−r) . (4)

It may be verified that
∞
∑

m=0

Pm = 1, (5)

so that conservation of probability is satisfied. A rigorousderivation of these expressions for
Pm is presented in the next section.

Interestingly, the probability distribution of the numberof activation cyclesm is equiva-
lent to the distribution of the minimum of two random variablesmPoisson andmgeometric, where
mPoisson is Poisson distributed with expectation valuer andmgeometric follows a geometric dis-
tribution with expectation value1/b.

The moments of this probability distribution can be calculated from the moment generating

2



function:

G (a) =
∞
∑

m=0

Pm exp (am)

= exp (−r) +
∞
∑

m=1

((1− b) exp (a))m
rm

m!
exp (−r)

+b exp (a)
∞
∑

m=1

((1− b) exp (a))m−1

∞
∑

n=m

rn

n!
exp (−r)

= exp (r (1− b) exp (a)− r)

+b exp (a)
∞
∑

n=1

1− ((1− b) exp (a))n

1− (1− b) exp (a)

rn

n!
exp (−r)

=
b exp (a) + (1− exp (a)) exp (r (1− b) exp (a)− r)

1− (1− b) exp (a)
. (6)

The moments follow from the derivatives of this function ata = 0:

M1 (t) =
∞
∑

m=1

mPm =
dG (a)

da

∣

∣

∣

∣

a=0

=
1

b
[1− exp (−rb)] , (7)

M2 (t) =
∞
∑

m=1

m2Pm =
d2G (a)

da2

∣

∣

∣

∣

a=0

=
1

b
[1− exp (−rb)] +

2 (1− b)

b2
[1− exp (−rb)− rb exp (−rb)] , (8)

giving a correlation parameterQ as:

Q (t) =
M2 (t)−M1 (t)

M1 (t)

=
2 (1− b)

b

[

1−
rb

exp (rb)− 1

]

. (9)

If we define the asymptotic valueM∞ = limt→∞M1 (t) = 1/b then the results for the average
number of activations and for the correlation parameterQ may be written as:

M1 (t) = M∞ [1− exp (−kblt)] , (10)

Q (t) = 2 (M∞ − 1)

[

1−
kblt

exp (kblt)− 1

]

.. (11)

Forkblt≪ 1 we find:

M1 (t) ≈ kswt, (12)

M2 (t)−M1 (t) ≈

(

1−
1

M∞

)

(kswt)
2 , (13)

which is consistent with Poisson statistics provided thatkbl ≪ ksw. For kblt ≫ 1 we find
constant values:

M1 (t) ≈ M∞, (14)

M2 (t)−M1 (t) ≈ 2M∞ (M∞ − 1) , (15)

consistent with a geometrical distribution with bleachingprobability 1/M∞ = kbl/ksw per
activation cycle. These limiting cases fit with the a priori expectations.
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2 Derivation of mixed Poisson-geometric probability distri-
bution

This section presents a derivation of the mixed Poisson-geometric probability distribution in
Eq. 3.

The treatment is based on a generalization of the asymmetricRandom Telegraph Signal
(RTS) model [1], which describes switching between two states. Here a third state is introduced,
representing the bleached state, which can in principle be reached from both the on-state and
the off-state of the emitter. So, the starting point is the three-state model with state 0 (‘off-
state’), state 1 (‘on state’), and state 2 (bleached state) with four transition ratesk01 (0 → 1),
k10 (1 → 0), k02 (0 → 2), andk12 (1 → 2). The total decay rate of state 0 is thusk0 = k01+k02,
and the decay rate of state 1 is thusk1 = k10 + k12. The lifetimes of the on and off states are
thusτon = 1/k1 andτoff = 1/k0, generallyτoff ≫ τon. Suppose the system starts out in state 0
at timet = 0. The probability that the emitter remains in state 0 and never is activated is:

g0 (t) = exp (−k0t) , (16)

for t ≥ 0. The probability that the system makes a single jump to state1 in this time interval is:

g1 (t) =

∫ t

0

dt′ g0 (t
′) k01 exp (−k1 (t− t′)) , (17)

the probability that the system makes two jumps and returns to state 0 is:

g2 (t) =

∫ t

0

dt′ g1 (t
′) k10 exp (−k0 (t− t′)) . (18)

The probability that the emitter bleaches directly to state2 is:

h1 (t) =

∫ t

0

dt′ g0 (t
′) k02, (19)

and the probability it bleaches to state 2 after one transition to state 1 is:

h1 (t) =

∫ t

0

dt′ g1 (t
′) k12. (20)

Clearly, these probabilities can be calculated by iteration. This is accomplished most easily by
application of a Laplace transform:

ĝn (s) =

∫

∞

0

dt gn (t) exp (−st) . (21)

If so desired, a transition to the Fourier domain can be made by the substitutions→ ε+ iω and
taking the limitε → 0 after the inverse (Fourier) transform. We find that forn = 2m even and
n = 2m+ 1 odd different relations hold:

ĝ2m (s) =
k10

k0 + s
ĝ2m−1 (s) , (22)

ĝ2m+1 (s) =
k01

k1 + s
ĝ2m (s) , (23)

ĥ2m (s) =
k02
s
ĝ2m (s) , (24)

ĥ2m+1 (s) =
k12
s
ĝ2m+1 (s) . (25)
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Starting fromĝ0 (s) = 1/ (k0 + s) this leads to the solutions:

ĝ2m (s) =
βm

k0 + s
, (26)

ĝ2m+1 (s) =
βm+1

k10
, (27)

ĥ2m (s) =
k02β

m

(k0 + s) s
, (28)

ĥ2m+1 (s) =
k12β

m+1

k10s
, (29)

with:

β =
k01k10

(k0 + s) (k1 + s)
. (30)

The Laplace transform of the probability that the molecule is activatedm times during the time
intervalt now follows as:

q̂m (s) = ĝ2m−1 (s) + ĝ2m (s) + ĥ2m−1 (s) + ĥ2m (s)

=
k10 (k02 + s) + (k12 + s) (k0 + s)

k10 (k0 + s) s
βm

=
(k0 + s) (k1 + s)− k01k10

k10 (k0 + s) s
βm

=
k1 + s

k10s
(1− β) βm, (31)

and:

q̂0 (s) = ĝ0 (s) + ĥ0 (s) =
k02 + s

(k0 + s) s
. (32)

It may be checked that the sum satisfies:
∞
∑

m=0

q̂m (s) =
1

s
, (33)

giving that:
∞
∑

m=0

qm (t) = θ (t) , (34)

implying that conservation of probability applies.
Only the subset of molecules that is activated at least once is accessible to analysis. It

follows that we need the renormalized probability distribution:

Pm (t) =
qm (t)

1− q0 (∞)
, (35)

for m ≥ 1 andP0 (t) = 0. Hereq0 (t) can be found via an inverse Laplace transform:

q0 (t) =
k02
k0

+

(

1−
k02
k0

)

exp (−k0t) , (36)

giving q0 (∞) = k02/k0 and a normalization factor1/ (1− q0 (∞)) = k0/k01 leading to a
probability distribution (in the Laplace domain):

P̂m (s) =
k0 (k1 + s)

k01k10s
(1− β) βm, (37)
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for m ≥ 1.
An important simplification can be made for timest much larger than1/k1 = τon. In that

case we may use the approximation:

P̂m (s) =
k0k1
k01k10s

(1− β) βm, (38)

with:

β =
k01k10

k0k1 + (k0 + k1) s
, (39)

1− β =
k0k1 − k01k01 + (k0 + k1) s

k0k1 + (k0 + k1) s
. (40)

At this point it is convenient to introduce the two physically relevant rates/time scales, namely
the activation and bleaching rates, defined by:

ksw =
k0k1
k0 + k1

, (41)

kbl =
k0k1 − k01k10
k0 + k1

=
k01k12 + k10k02 + k02k12

k0 + k1
. (42)

The activation time constant is simplyτsw = 1/ksw = τon+τoff . We also find thatk01k10/k0k1 =
1− kbl/ksw. Now the probability distribution can be written as:

P̂m (s) =
ksw (ksw − kbl)

m−1 (kbl + s)

s (ksw + s)m+1
, (43)

This expression may be rewritten in a form that is more amenable to inverse Laplace transform:

P̂m (s) =

(

1−
kbl
ksw

)m−1
kmsw

(ksw + s)m+1
+
kbl
ksw

(

1−
kbl
ksw

)m−1
km+1
sw

s (ksw + s)m+1

=

(

1−
kbl
ksw

)m−1
kmsw

(ksw + s)m+1

+
kbl
ksw

(

1−
kbl
ksw

)m−1
[

1

s
−

m
∑

n=1

knsw
(ksw + s)n+1

]

, (44)

The inverse Laplace transform now gives:

Pm (t) =

(

1−
kbl
ksw

)m−1
(kswt)

m

m!
exp (−kswt)

+
kbl
ksw

(

1−
kbl
ksw

)m−1
[

1−
m
∑

n=0

(kswt)
n

n!
exp (−kswt)

]

=

(

1−
kbl
ksw

)m
(kswt)

m

m!
exp (−kswt) (45)

+
kbl
ksw

(

1−
kbl
ksw

)m−1 ∞
∑

n=m

(kswt)
n

n!
exp (−kswt) ,

in agreement with the results of the previous section.
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3 Effect of labelling stoichiometry

Suppose there areK labelling sites withSi (i = 1, 2 . . . K) fluorescent emitters per site which
haveMij activations (j = 1, 2 . . . Si). The number of activations per site is then:

Mi =

Si
∑

j=1

Mij . (46)

Suppose the statistics of the number of emitters per site is independent of the site and has
moments〈S〉 and 〈S2〉. Suppose furthermore that the statistics of the number of activations
of each emitter is independent of emitter and site and gives rise to moments according to the
three-state model:

〈Mij〉 = M∞ [1− exp (−kblt)] , (47)

〈M2
ij −Mij〉 = 2M∞ (M∞ − 1) [1− exp (−kblt)− kblt exp (−kblt)] , (48)

for all i andj and withM∞ = ksw/kbl. TheQ-parameter determined from the spatial correlation
analysis is given by:

Q =
〈Mi

2 −Mi〉

〈Mi〉
, (49)

with:
〈Mi〉 = 〈S〉〈Mij〉, (50)

and:

〈Mi
2〉 = 〈S (S − 1)〉〈Mij〉

2 + 〈S〉〈Mij
2〉.

Combining all results gives:

Q = 2 (M∞ − 1)

[

1−
kblt

exp (kblt)− 1

]

+ µM∞ [1− exp (−kblt)] , (51)

with:

µ =
〈S2〉 − 〈S〉

〈S〉
, (52)

a number characterizing the statistics of the number of emitter per site. The second term on the
r.h.s. is new compared to the previous analysis of the statistics per emitter. Clearly, there are
now three parameters that determineQ as a function oft, the effective bleaching ratekbl, the
asymptotic value of the number of activations per emitterM∞ and the labelling stoichiometry
parameterµ. The expected total number of activations is:

〈N〉 =
K
∑

i=1

Si
∑

j=1

Mij = K〈S〉〈Mij〉

= K〈S〉M∞ [1− exp (−kblt)] . (53)

All that is lacking then to determine the number of labellingsitesK is a connection between
〈S〉 andµ. We consider now three examples in which there is a connection between the mean
and the variance of the statistical distribution of the number of emitter per site.

The first example refers to having a monomer/dimer on each site with probabilitiesP1 =
1 − β andP2 = β. It follows that then〈S〉 = 1 + β and 〈S2〉 = 1 + 3β so thatµ =
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2β/ (1 + β). Measurement ofµ from Q thus gives a value forβ = µ/ (2− µ) and hence for
〈S〉 = 2/ (2− µ). So, the average degree of monomerization/dimerization can potentially be
measured in this way, in addition to the total number of labelling sites.

The second example is for a Poisson distributed number of emitters per site. This is a model
for primary antibody labelling where multiple fluorophoresare attached to the antibody, under
the condition that there is no significant fluorescence quenching. The averages are over the
subset of sites with at least one emitter. This gives〈S〉 = η/ (1− exp(−η)) and〈S2 − S〉 =
η2/ (1− exp(−η)) with η the Poisson rate, so thatµ = η. Possibly, the Poisson-rate can thus
be measured directly from the fit of the measuredQ as a function oft to the model. In caseη is
large compared to unity then we simply have〈S〉 = µ = η.

The third example is a model for secondary antibody labelling, where multiple secondaries
can bind to a single primary, and where multiple emitters areattached to each secondary, i.e.
now S =

∑n

i=1 Ti with n the number of secondaries and theTi the number of emitters per
secondary. We will analyse the case where then are Poisson distributed with rateµ1 and theTi
with rateµ2. The probability distribution ofS is given by:

P (S) =
∞
∑

n=0

P (S|n)P1 (n) , (54)

P (S|n) =
∞
∑

T1=0

. . .
∞
∑

Tn=0

P2 (T1) . . . P2 (Tn) δ

(

S −
n
∑

i=1

Ti

)

, (55)

P1 (n) =
µn
1 exp (−µ1)

n!
, (56)

P2 (T ) =
µT
2 exp (−µ2)

T !
. (57)

We find that the probability of observing zero fluorophores is:

P (0) =
∞
∑

n=0

P (0|n)P1 (n) =
∞
∑

n=0

µn
1 exp (−µ1)

n!
exp (−nµ2)

= exp (−µ1 (1− exp (−µ2))) . (58)

Restricting to the observed casesS > 0 implies we have to normalize the probability distribu-
tion by a factor1/ (1− P (0)) and sum only over valuesS > 0. This leads to:

〈S〉 =
1

1− P (0)
〈n〉〈T 〉, (59)

〈

S2
〉

=
1

1− P (0)

[

〈n〉〈T 2〉+ 〈n(n− 1)〉〈T 〉2
]

, (60)

giving:

µ =
〈T 2〉

〈T 〉
− 1 + 〈T 〉

[

〈n2〉

〈n〉
− 1

]

. (61)

Here, the angular brackets indicate averaging over the individual probability distributions forn
and for theTi. For the Poisson-distribution at hand this gives:

〈S〉 =
µ1µ2

1− exp (−µ1 (1− exp (−µ2)))
, (62)

µ = µ2 (µ1 + 1) . (63)
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Generally prior knowledge on the distribution of secondaries per primary and the distribution of
fluorophores per secondary is needed to proceed. It appears that the final counting result is not
very sensitive to details of the secondary to primary labelling stoichiometry, i.e. errors in the
value ofµ1 are largely compensated by opposite errors in the estimatedM∞, giving a relatively
robust estimate for the number of localizations per primaryantibody. This can be understood
semi-quantitatively as follows. In case there is little bleaching the fitting ofM∞ is dominated
to a large extent by the switching regimekblt≪ 1. Then it holds that:

〈M〉 ≈ 〈S〉M∞kblt, (64)

Q ≈ (µ+ 1)M∞kblt. (65)

So, given the measured correlation parameterQ as a function of time and bleach ratekbl, the
productA = (µ+ 1)M∞ is fixed for all values ofµ. It then follows that the estimate for the
number of localizations per primary antibody is:

〈M〉 ≈
〈S〉

µ+ 1
Akblt, (66)

so that the stoichiometry only affects the final counting estimate via the ratio:

ζ =
〈S〉

µ+ 1
=

〈S〉2

〈S2〉
. (67)

It turns out that the functional dependence ofζ on µ2 hardly changes withµ1 for the range of
values1 < µ1 < 5, with relative variations on the order of 10%. In fact, the dependence of
ζ on µ2 in the range of values1 < µ2 < 5 is also rather weak. It should be noted that the
current analysis neglects quenching, but in case that can besafely neglected, it does show that
the counting analysis is robust against errors in the stoichiometry calibration.

4 Estimation of correlation parameter at high labelling den-
sity

In samples with high labelling densities or with tightly clustered labelled molecules, the Q-
estimation may be prone to overestimation because it mistakes correlations due to the sample’s
spatial structure for correlations from repeated localization of the same labelling site. Here we
will analyse under which conditions this problem is expected to occur.

The Q-estimation algorithm attempts to fit a model functionH(q) to the FRC numerator,
which describes the decay in spatial correlations due to localizations of the same labelling site.
H(q) depends on the unknown spread of localizations of a single labelling site (i.e. effective
localization error) due to localization error, errors in the correction for stage drift and the finite
size of the labels, and is parameterized in Eq. 6 as:

H (q; σm,∆σ) =
1

√

1 + 8π2∆σ2q2
exp

(

−
4π2σ2

mq
2

1 + 8π2∆σ2q2

)

, (68)

whereσm is the mean of the effective localization error and∆σ it’s standard deviation.
The FRC’s numeratorν(q) can be expressed as:

ν (q) ∝ (NS(q) +Q)H(q), (69)
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where the termS(q) relating to the sample’s spatial structure is equal to:

S (q) =
1

K2

∫

d2q′
∣

∣

∣
ψ̂ (~q ′)

∣

∣

∣

2 δ (|~q ′| − q)

2πq
, (70)

with K the number of labelling sites and̂ψ (~q) the Fourier transform of the normalized density
of labelling.

The algorithm will have difficulties estimatingσm and∆σ when the decay ofS(q)H(q) and
QH(q) cannot be distinguished very well. This would occur if the decay ofS(q) is still larger
thanQ at the spatial frequencyq = 1/2πσm whereQH(q) starts to decay appreciably. Thus,
we have the criterion:

NS(1/2πσm) < Q. (71)

If we take as an example structure a line of lengthL and Gaussian cross-section with full
width at half maximumw, then we have [2]:

S (q) ≈
1

πqL
exp

(

−
π2q2w2

2 log(2)

)

, (72)

leading to the criterion for the linear density of labelled sites:

ρlin =
K

L
<

1

σm

(

Q

2M
exp

(

w2

8 log(2)σ2
m

))

. (73)

If the width of the filaments is on the same order as the width ofthe localization error distribu-
tion andQ ≈ M , it follows that there should be fewer than one site per2σm/e ≈ 0.74σm. In a
more typical scenarioQ ≈ 1.5M and thus the criterion becomes less than one per0.5σm.

Similarly, for a line with a rectangular cross-section and widthw we would have [2]:

S (q) ≈
1

πqL

(

sin (πqw)

πqw

)2

, (74)

and thus we get the criterion:

ρlin <
1

σm

(

Q

2M

)(

sin (w/2σm)

w/2σm

)

−2

, (75)

or if w equals the full width at half maximum of the localization error distribution thatρlin
should be less than one site per1.23σm (pessimistic case) or one per0.82σm (typical case).

Thirdly, if we have a bell-shaped structure that can be described by a Gaussian with standard
deviationa, then the number of sitesK in the structure should satisfy:

K <
Q

M
exp(a2/σ2

m). (76)

Finally, if we have a circular structure with a radiusa andK sites, then

S(q) =

(

2
J1(2πqa)

2πqa

)2

, (77)

and therefore we obtain the criterion

K <
Q

M

(

2
J1(a/σm)

a/σm

)

−2

. (78)

Fora ≈ σm this givesK < 1.3 (pessimistic case) orK < 1.9 (typical case). Fora ≈ 2σm this
becomesK < 3 (pessimistic case) orK < 4.5 (typical case).
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5 Effect of false negative localizations

False negative localizations refer to events where a fluorophore is activated during an acquisition
but this fluorescence does not lead to a successful localization by the reconstruction algorithm.
This may happen for example if nearby fluorophores are simultaneously active or if the fluo-
rophore is very dim or the event is very short. The consequence of false negative localizations
is that the number of localizations per fluorophore does not correspond anymore to the number
of activation events. Below we will analyse the consequencesassuming that the probabilities
for activation events to result in a successful localization Ploc are independent and the same for
all events.

Firstly, let us consider what happens to the expected numberof localizations per fluorophore
Mloc:

〈Mloc〉 = 〈〈Mloc|M〉〉 = 〈MPloc〉 = Ploc 〈M〉 . (79)

Here,M denotes the number ofactivations per fluorophore. Similarly, we find that:

〈

M2
loc

〉

=
〈〈

M2
loc|M

〉〉

= Ploc (1− Ploc) 〈M〉+ P 2
loc

〈

M2
〉

, (80)

from which it follows that

Q→
〈M2

loc −Mloc〉

〈Mloc〉
=
P 2
loc 〈M

2 −M〉

Ploc 〈M〉
= PlocQ. (81)

Another important consequence of false negative localizations is that a fractionP0 of all
fluorophores is never localized. This fraction is given by:

P0 =
∞
∑

m=1

b (1− b)m−1 (1− Ploc)
m =

b (1− Ploc)

1− (1− b) (1− Ploc)
(82)

Finally, it can be shown that the probability distribution for the number of localizations per
fluorophore is given by the same expression as in Eq. 3, if the following substitutions are made:

r → Plocr (83)

b →
b

1− (1− b)(1− Ploc)
=

b

Ploc + b (1− Ploc)
(84)

If b = 1/M∞ is not too large, then effectively onlyM∞ appears to be reduced by a factor
Ploc. However, becauseM becomes smaller by the same amount, the accuracy of the estimate
for M does not deteriorate much. For example, ifPloc = 80% andM∞ = 5 then the estimate
for M would be off by 5%.
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